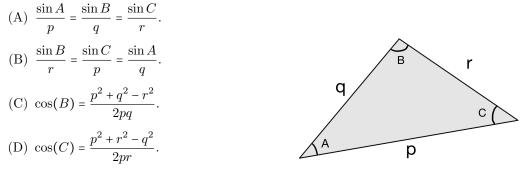
Pre-Calculus Final (1122)

- Any device with a computer algebra system is prohibited during the exam.
- There are two sections in this exam. Please read the respective instruction very carefully.
- We use $\log(x)$ to denote $\log_{10}(x)$ (logarithm of base 10).

Section A. (75%)

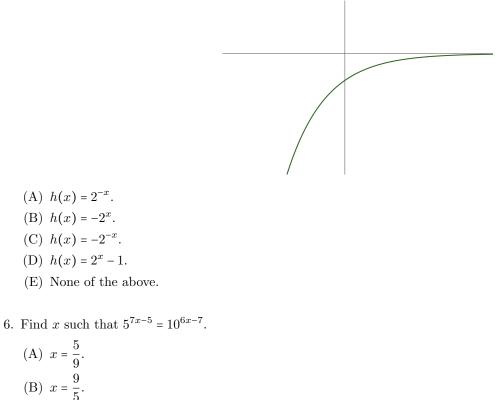

Instruction : For each question in this section, there is only ONE correct answer. Each correct answer is worth 5%.

1. Let u, v be angles in the first quadrant, and suppose $\sin(u) = \frac{1}{3}$ and $\cos(v) = \frac{1}{4}$. Find $\sin(u+v)$.

- (A) $\frac{1+2\sqrt{30}}{12}$ (B) $\frac{1}{12}$ (C) $\frac{2\sqrt{2}+\sqrt{15}}{12}$ (D) $\frac{7}{12}$
- (E) None of the above.
- 2. Simplify the expression

 $\sin^4 x - \cos^4 x - \sin^2 x + \cos^2 x.$

- (A) $\sin(2x)$
- (B) $\cos(2x)$
- (C) 1
- (D) 0
- (E) None of the above.
- 3. Which of the following equations correctly describes a relation between the lengths p, q, r and the angles A, B, C of the following triangle ?



(E) None of the above.

4. Suppose $0 \le x < 2\pi$. How many solutions does the equation $7 \sin x + 2 \cos^2 x = 5$ have ?

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4

5. The following is the graph of a function h(x). Which of the following can h(x) possibly be?

(C)
$$x = 7 + 5 \log(5)$$
.
 $5 \log(5) - 7$

(D)
$$x = \frac{1}{7\log(5) - 6}$$
.

(E) None of the above.

7. For x > 1, rewrite the expression

 $2\log(x) - 3\log(x^2 + 1) + 4\log(x - 1)$

as
$$\log(f(x))$$
. Find $f(x)$

(A)
$$\frac{2x(4x-4)}{3(x^2+1)}$$

(B) $x^2 - (x^2+1)^3 + (x-1)^4$
(C) $\frac{x^2(x-1)^4}{(x^2+1)^3}$
(D) $\frac{2^x \cdot 4^{x-1}}{3^{x^2+1}}$

- (E) None of the above.
- 8. For x, y > 0, which of the following must be correct?
 - (A) $3\log(\sqrt[3]{xy}) = \log(x) + \log(y)$.
 - (B) $(\log(x))^y = y \log(x)$.
 - (C) $\log(3x^y) = \log(3) \cdot (y \log x)$.

(D)
$$\log(4) = (\log(2))^2$$
.

(E) None of the above.

9. It is known that 4x + y = 10 and $10^{-2x} = 6 \cdot 10^{-3y}$. Which of the following must be correct?

(A) $x = \frac{10 + 2\log 6}{7}$. (B) $y = \frac{10 + 2\log 6}{7}$. (C) $x = \frac{30 + \log 6}{14}$. (D) $y = \frac{30 - \log 6}{14}$.

(E) None of the above.

10. Let A = (2, -5, -4), B = (4, 1, -4) and P = (k, k, k). It is known that \overrightarrow{AB} is perpendicular to \overrightarrow{AP} . Find the value of k.

- (A) -14/3
- (B) -13/4
- (C) 13/4
- (D) 14/3
- (E) None of the above is correct.

11. The intersection point P of the plane 3x + y - 2z = 23 and the line $\vec{r}(t) = (0, 2, 3) + t(-1, 0, 3)$ is

- (A) (-3, 2, 9)
- (B) (3, -2, -9)
- (C) (-3, -2, 6)
- (D) (3, 2, -6)
- (E) None of the above.
- 12. Which of the following statement must be correct?
 - (A) Any two distinct lines in the space \mathbb{R}^3 would either be parallel or intersect.
 - (B) The equation 2x + 3y + 4z = 5 represents a straight line in the space \mathbb{R}^3 .
 - (C) Two non-parallel planes would intersect to give a straight line in the space \mathbb{R}^3 .
 - (D) Two vectors \vec{u} and \vec{v} are perpendicular to each other if $\vec{u} \cdot \vec{v} = -1$.
 - (E) None of the above is correct.

13. The line of the intersection of planes x + 2y - z = 5 and x - 2y + 2z = 5 is

- (A) $\vec{r}(t) = \langle 5 + 2t, 1 + 3t, -4t \rangle$, for $t \in \mathbb{R}$.
- (B) $\vec{r}(t) = \langle 5 + 2t, 1 3t, -4t \rangle$, for $t \in \mathbb{R}$.
- (C) $\vec{r}(t) = \langle 1 + 2t, 6 + 3t, 8 4t \rangle$, for $t \in \mathbb{R}$.
- (D) $\vec{r}(t) = \langle 1 + 2t, 6 3t, 8 4t \rangle$, for $t \in \mathbb{R}$.
- (E) None of the above.

14. Choose the correct statement.

(A)
$$\sum_{n=11}^{20} 3^n = \frac{3^{21} - 3^{11}}{2}$$
.
(B) $\sum_{n=11}^{20} n^2 = 2485$.
(C) $\sum_{n=11}^{20} 2n = 310$.

- (D) All of the above.
- (E) None of the above.

15. Which of the following is the sum $\frac{1}{n} \sum_{k=1}^{n} \left(2 + 3 \cdot \frac{k}{n}\right)^2$ equal to?

(A)
$$4+6 \cdot \frac{1+n}{n} + \frac{3(n+1)(2n+1)}{2n^2}$$

(B) $4+12 \cdot \frac{1+n}{n} + \frac{9(n+1)(2n+1)}{2n^2}$
(C) $4+12 \cdot \frac{1+n}{n} + \frac{3(n+1)(2n+1)}{2n^2}$
(D) $4+6 \cdot \frac{1+n}{n} + \frac{9(n+1)(2n+1)}{2n^2}$
(E) None of the above.

Section B. (25%)

Instruction : For each question in this section, choose all correct answers. For each question,

- if you make no mistakes in your choices, you get 5%;
- if you make one mistake in your choices, you get 4%;
- if you make two mistakes in your choices, you get 3%;
- if you make more than two mistakes in your choices, you get 0%.

16. Determine which of the following are solutions to the equation

$$4\sin^3 x - 8\sin^2 x - \sin x + 2 = 0.$$

- (A) $\frac{\pi}{6}$
- (B) $\frac{3\pi}{4}$
- (C) $\frac{5\pi}{6}$
- (D) $\frac{7\pi}{4}$
- (E) $\frac{11\pi}{6}$
- 17. Which of the following expressions are correct?
 - (A) $\log_3(3^{-7x+3}) = -7x + 3$ for any real numbers x.
 - (B) $4^{\log_4(-9+6q)} = -9 + 6q$ for any $q > \frac{3}{2}$.
 - (C) $7^{6\log_7(9)-9\log_7(6)} = 2^{-9} \cdot 3^3$.
 - (D) The domain of $f(x) = \log_8(5-5x)$ is $x \le 1$.
 - (E) The range of $f(x) = \log_8(5-5x)$ is \mathbb{R} (the set of all real numbers).
- 18. Consider three points A = (1,1,1), B = (2,3,0), C = (0,1,3). Let P be the plane containing these three points. Which of the following statements must be correct?
 - (A) $\langle -4, -1, -2 \rangle$ is a normal vector of the plane P.
 - (B) The area of $\triangle ABC$ is $\frac{\sqrt{21}}{2}$.
 - (C) The line $\vec{r}(t) = \langle 1 + t, 1, 1 2t \rangle$ lies on the plane P.
 - (D) The angle $\angle BAC$ is greater than $\frac{\pi}{2}$.
 - (E) The equation of the plane P is 4x y + 2z = 0.

- 19. Suppose that $\|\vec{v}\| = 1$, $\|\vec{w}\| = 3$ and the angle between \vec{v} , \vec{w} is $\frac{\pi}{3}$. Which of the following statements must be correct?
 - (A) $\|\vec{v} + 2\vec{w}\| = \sqrt{43}$.
 - (B) The angle between $\vec{v} + 2\vec{w}$ and \vec{v} is $\frac{\pi}{3}$.
 - (C) $||(\vec{v} + 2\vec{w}) \times \vec{v}|| = 3\sqrt{3}.$
 - (D) $(\vec{v} + 2\vec{w}) \bullet (\vec{v} 2\vec{w}) = 7.$
 - (E) $(\vec{v} + 2\vec{w}) \times \vec{v}$ is perpendicular to \vec{v} and \vec{w} .

20. Suppose $\{a_k\}_{k=1}^{\infty}$ is a sequence such that $\sum_{k=1}^{n} a_k = 10n^3 + 4n$. Which of the following statements must be correct?

- (A) $a_1 = 14$.
- (B) $a_n = 30n^2 30n + 14$.
- (C) $\sum_{k=1}^{n-2} a_{k+2} = 10n^3 + 4n 88.$
- (D) We cannot determine the exact formula of a_n from the given information.
- (E) $\{a_k\}_{k=1}^{\infty}$ is an arithmetic sequence.